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Purpose. This study was conducted to determine the efficacy of using
nonempirical parameters in the estimation of blood-brain transport,
inferred from central nervous system (CNS) activity, for a set of twenty-
eight compounds.

Methods. A discriminant function analysis was used to construct three
distinct models based on topological indices, a hydrogen-bonding
parameter, and logP.

Results. These models correctly predict the CNS activity of twenty-
seven of the twenty-eight compounds.

Conclusions. Nonempirical parameters may be used effectively in the
estimation the cerebrovascular penetration for known and newly
designed drugs.
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INTRODUCTION

Blood-brain (BB) transport of central nervous system
(CNS) active molecules is crucial to their effectiveness as thera-
peutic agents. Transendothelial transport of chemicals depends
on multiple factors which are reported to include binding to
plasma constituents, ionization at physiological pH, time-
dependent plasma-concentration profile (which is dependent
upon the distribution, metabolism and elimination processes),
cerebral blood flow (which determines the access of drugs to
the central vasculature) and lipophilicity of the molecules (1).
All important determinants of BB entry, except cerebral flow,
can be manipulated through structural modification of the
drug molecule.

Various authors have attempted to predict BB transport
of molecules from their partition coefficients (P), determined
experimentally with different solvent pairs, e.g., octanol/water,
cyclohexane/water. However, in many cases the correlations
between partition coefficient and BB transport are not very
good (1). Also, solvatochromic parameters, such as dipolarity/
polarizability (w'), hydrogen-bond acceptor basicity (B'),
hydrogen-bond donor acidity (a'?), and intrinsic volume (Vx)
have been used to estimate the passage of molecules across the
vascular endothelium into the brain (1).

Many of the parameters used to predict BB transport are
either experimental properties or parameters based on experi-
mental data. In drug design, one has to evaluate a very large
number of chemicals in order to decide which handful of molec-
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ular structures should be tested extensively for the optimum
discovery of novel therapeutic agents. In such cases, one is
often confronted with candidate molecules for which there is
little or no experimental data or that have not yet been synthe-
sized. Evaluation schemes based solely on experimental param-
eters will be of limited value in such situations.

We have been involved in the development of models for
selecting bioactive analogs of chemicals, as well as for pre-
dicting physicochemical, biochemical and toxic properties of
different sets of molecules, using quantitative structure-activity
relationships (QSAR) and quantitative molecular similarity
analysis (QMSA) methods. Our predictive models are based
on parametric values which can be calculated directly from
molecular structure, and include topological indices (TIs), sub-
structures, geometrical parameters, and quantum-chemical
descriptors (2-6).

Seelig et al. (7) attempted to establish a correlation between
the BB entry and the surface activity of twenty-eight, diverse
compounds. A lipophilicity analysis was run side-by-side with
their study to show the problems of using partitioning coeffi-
cients for predicting BB transport as inferred from central ner-
vous system (CNS) activity. A critical analysis of their results
shows that, while their predictions were reasonable for com-
pounds that exhibited low values of both critical micelle concen-
trations (CMC) and concentration for onset of surface-activity
(Cy), the method was inaccurate for compounds exhibiting
higher CMC and C; values. Therefore, it was of interest to see
if we could develop a more accurate predictive model for this
set of compounds using nonempirical parameters; computed
algorithmically from molecular structures.

TIs have been used to develop QSAR and QMSA models
pertinent to pharmacokinetics, pharmacodynamics, and toxicol-
ogy (2-6, 8, 9). In the present paper, we have carried out a
discriminant function analysis (DFA) of the twenty-eight com-
pounds analyzed by Seelig et al. (7) in an effort to predict their
BB transport from theoretical parameters of chemical structure,
specifically: a set of 102 TIs, a computed hydrogen-bonding
parameter, HB,, (10) and calculated logP (11).

MATERIALS AND METHODS

Database

The twenty-eight compounds analyzed in this study, along
with their observed CNS activity levels, were those presented
by Seelig et al. (7), as shown qualitatively in Table 1.

Calculation of Parameters (TIs, HB; and logP)

TIs were calculated using the POLLY software developed
by Basak et al. (12). The program calculates 102 TIs; including
the Wiener index, Randi¢’s connectivity index, higher order
connectivity indices, information-theoretic indices defined on
a distance matrix, indices of neighborhood complexity and
Balaban’s J indices; from the SMILES line-notation entry of
molecular structure. These indices have been described in detail
previously (4) and brief definitions are included in Table II.
The hydrogen bonding parameter, HB,, was calculated by the
software, H-BOND, developed by Basak (10) and based on the
work of Ou et al. (13). LogP values for the compounds were
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Table I. CNS Activity Levels, Reported and Predicted (from Jack-
knifing), for Twenty-eight Compounds: Reported Activity (Ag), Pre-
dicted Activity for Model 1 (Ap,), Model 2 (Ap,), and Model 3 (Apj).
Compounds with High CNS Activity Are Designated by + and Com-
pounds with Low or No Activity Are Designated by —

No.  Compound Ag  Ap Ap, Aps
1 (R)-apomorphine-HCl + + + +
2 Chlorpromazine-HCl + + + +
3 Clonidine-HCI + + + +
4 Desipramine-HCl + + + +
5 Doxylamine succinate + + + +
6 cis-Flupentixol-2HC1 + + + +
7 Haloperido]l-HCI1 + + + +
8 Imipramine-HCl + + + +
9 Naltrexone-HCl + + + +

10 Perphenazine-2HCl + + + +

11 Promazine-HCl + + + +

12 Promethazine-HCl + + + +

13 Roxindole methane sulfonate + + + +

14 Tamitinol-2HCI + + + +

15 Thiopental sodium + + + +

16 Thioridazine-HCl + + + +

17 Astemizole-2HCI - - - -

18 Carebastine - - - -

19 Domperidone-HCl - - - -

20 Ebastine methane sulfonate - - - -

21 Loperamide-HCl - - - -

22 Terfenadine - - - -

23 Atenolol - - - —

24  Mequitazine-HCl - + + +

25 Salbutamol hemisulfate - - - —

26 Carmoxirol-HCl1 - - - —

27 Furosemide - - - —

28 Pirenzepine-HCl — . - —

4 Mequitazine is the only compound which was misclassified by all
three models as a CNS* compound, instead of a CNS™ compound.

calculated by the CLOGP software, version 3.2 (11). The sym-
bols and non-transformed values for the Tls used in our models,
as well as HB, and logP are presented in Table III.

Model Development/Statistical Analysis

All TI values were transformed by the natural logarithm
of the index plus one, because some TIs may be several orders
of magnitude greater than others. After this step, the TIs were
examined and completely correlated indices (those with r =
1.0) were removed, leaving 94 TIs.

Since such a large set of values, 96 including HB, and
logP, could lead to spurious results, it was necessary to reduce
the amount of data which would be used for model construction.
Because many of the TIs are highly intercorrelated, the 94-
dimensional space can be represented by a subspace without
significant loss of information. The statistical package, SAS
(14), was used to perform a principal component analysis (PCA)
on the set of 94 TIs, combining them into a set of principal
components (PCs). Principal components explain the maximum
variance while maintaining maximal orthogonality between
PCs. From the PCA analysis, seven PCs were retained, all of
which had eigenvalues greater than 1.0.
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Next, subsets of TIs were selected from the seven PCs
based on the correlation of the TIs to the PCs. The first
subset used the two most-highly correlated TIs for each of
the seven PCs, while the second subset selected TIs from
the PCs based proportionately on the eigenvalues of the PCs.
From the PCs with eigenvalues close to 60, the 6 most-
highly correlated TIs were selected; for PCs with eigenvalues
between 10 and 20, two TTs were used, and PCs with eigenval-
ues between 1 and 10, the one TI with the highest correlation
was chosen.

Three separate data sets were used in the DFA model
construction. One set contained all 94 TIs, while the other
two sets used the subsets described previously. HB; and logP
were included in all three sets. Selection of indices for the
final models was done using the SAS procedure, STEPDISC,
and the models were crossvalidated using the DISCRIM pro-
cedure (14). Indices were examined using a stepwise selec-
tion. This process begins with no variables in the model, and
adds the one variable which contributes the most to the model.
In a stepwise fashion, variables continue to be added and
removed from the model based on their ability to meet the
criteria, first, for inclusion in the model, and second, for
remaining in the model. In this fashion, the model selects
specific variables as it is constructed and eliminates any
which become irrelevant. Validation of the models was con-
ducted through jack-knifing.

RESULTS

Model 1 was constructed from five parameters: CIC,,
CICs, %", ®x"c, and HB|; model 2 used six parameters:
CIC,, CICs, P,, ®c, 3xcn, and HB,; and model 3 also used
six parameters: CIC,, CICs, M,, ®xc, x'cn» and HB,.
Although the logP variable was available for selection dur-
ing model construction, it was not incorporated into any of
the models.

Each of the three models performed well, having 100%
accuracy for classifying CNS* compounds and 91.75% accuracy
for CNS™ compounds. This was true in the initial model con-
struction and after the jack-knifing procedure. The final results
from the jack-knifing procedure are shown in Table I. The
scoring results used by the DFA procedure for classification of
the compounds are presented in Figure 1.

DISCUSSION

The purpose of this study was to evaluate the utility
of nonempirical parameters for estimating transendothelial
transport of chemicals. To this end, we used a DFA procedure
to incorporate nonempirical parameters into three separate
models for predicting the BB transport for a set of well-
documented CNS-active chemicals (7). Each model correctly
predicted BB transport for twenty-seven of the twenty-eight
compound set.

One of the most interesting findings was the reliance of each
model on ahydrogen-bonding parameter (HB ) and the exclusion
of the logP parameter. Analysis of the step-wise discrimination
procedure, used to select features for model inclusion, reveals
that logP was not statistically significant in any step of model
construction. This finding reinforces the conclusion of Seelig et
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Table IL. TIs?, HB,(10), and log P(11) Values Used for Each of the 28 Compounds
N CIC, CICs 2Xv 5X¥e P, X SXVen M, SXPeh HB, log P
1 0.291 0.291 5.796 0.000 35 0.000 0.000 116 0.000 5 3.010
2 0.588 0.588 7.011 0.000 32 0.000 0.000 110 0.000 2 5.200
3 0.957 0.957 3.699 0.000 20 0.000 0.062 70 0.125 5 2.340
4 0.970 0.970 5.366 0.000 29 0.000 0.000 102 0.000 3 4.390
5 0.816 0.816 5.266 0.030 28 0.118 0.000 98 0.000 3 1.850
6 0.741 0.596 8.704 0.004 47 0.144 0.000 160 0.000 4 5.900
7 0.857 0.857 7.350 0.019 39 0.072 0.000 134 0.000 4 3.520
8 1.189 1.189 6.066 0.000 31 0.000 0.000 108 0.000 2 4.710
9 0.468 0.468 8.557 0.051 47 0.078 0.121 152 0.169 5 1.820
10 0.717 0.566 8.614 0.000 41 0.000 0.000 142 0.000 5 5.570
11 1.088 1.088 6.430 0.000 30 0.000 0.000 104 0.000 2 4.280
12 1.107 1.107 6.545 0.000 31 0.000 0.000 106 0.000 2 4.650
13 0.431 0.431 7.088 0.000 39 0.000 0.032 136 0.037 5 4.990
14 0.614 0.614 4.275 0.000 19 0.000 0.000 68 0.000 5 1.900
15 0.831 0.831 4.660 0.057 23 0.144 0.000 78 0.000 6 2.980
16 0.422 0.422 8,937 0.000 39 0.000 0.000 134 0.000 2 6.420
17 0.719 0.719 8.905 0.000 52 0.000 0.023 180 0.032 6 6.060
18 1.210 1.210 10413 0.064 55 0.250 0.000 190 0.000 6 ~ 1.860
19 0.556 0.481 8.423 0.000 49 0.000 0.056 166 0.102 9 9.450
20 1.423 1.423 10.733 0.083 52 0.144 0.000 180 0.000 3 6.160
21 1.306 1.306 9.904 0.056 53 0.179 0.000 180 0.000 5 3.900
22 1.385 1.385 11.144 0.121 54 0.289 0.000 184 0.000 5 6.240
23 0.817 0.827 4815 0.000 24 0.000 0.000 86 0.000 9 -0.109
24 0.978 0.978 8.130 0.000 39 0.000 0.000 132 0.000 2 5.120
25 0.981 0.981 5.193 0.000 24 0.000 0.000 82 0.000 8 0.111
26 0.415 0.415 7.424 0.000 42 0.000 0.032 146 0.037 6 5.530
27 0.188 0.188 6.010 0.017 32 0.118 0.036 108 0.056 11 2.040
28 0.569 0.569 6.654 0.000 41 0.000 0.000 140 0.000 8 1.710

4 The original, non-log scaled values for the TIs (CIC,, CICs, X", 5X"¢, Py, *X¢, *Xcn My, XPq,) are presented. TIs were transformed by the
natural logarithm of the TI plus one for model creation and validation.
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Fig. 1. Canonical scoring produced by the DFA procedure for
classification of CNS activity.

al. (7), that lipophilicity is not a reliable parameter for classifying
the CNS activity of this particular set of twenty-eight compounds.
The two models that initially incorporated only 14 or 15 parame-
ters are the most reliable. The model developed from the set of
all TIs, HB,, and logP, while giving the same results as the other
two models, risks spurious results through the possible inclusion

of extraneous parameters or the deletion of relevant parameters
due to the large number of calculations required.

Earlier studies have shown that molecular weight, which
roughly correlates with molecular size, is inversely related to
transendothelial transport (15). Our study has concurred with this
finding, in that each model contains one descriptor whichis corre-
lated with molecular size, P,, M;, and to a lesser extent, 2x".

In an earlier study, Basak and Grunwald (9) developed a
model aimed at predicting mutagenicity/non-mutagenicity for a
set of 463 chemicals. The DFA model using TIs correctly pre-
dicted the activity for 75% of the chemicals. Addition of quantum
chemical parameters, viz., dipole moment (), HOMO energy
(Enomo), LUMO energy (E; unmo), and heat of formation (Hg), did
not make a significant improvement to the predictive accuracy
of the model. The relative success of the current study is all the
more encouraging, because ahigh level of classification accuracy
was achieved using only structurally-based parameters, plus a
generalized quantifier of hydrogen-bonding capacity.

These results are also encouraging in their implications for
development of new therapeutic agents that are active in the cen-
tral nervous system. The ability to predict CNS activity from
parameters that can be calculated directly from chemical struc-
ture would help to speed the development of new drugs, allowing
drug design based on predicted activity—even the potential of
compounds that have yet to be synthesized could be evaluated
for development as therapeutic agents.
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Table IIL. Topological Index Symbols and Definitions

¥y Information index for the magnitudes of distances between

. all possible pairs of vertices of a graph

4 Mean information index for the magnitude of distance

w Wiener index = half-sum of the off-diagonal elements of the
distance matrix of a graph

P Degree complexity

HY Graph vertex complexity

HP Graph distance complexity :

ic Information content of the distance matrix partitioned by
frequency of occurrences of distance h

0 Order of neighborhood when IC, reaches its maximum value
for the hydrogen-filled graph

Iors Information content or complexity of the hydrogen-suppressed
graph at its maximum neighborhood of vertices

Ocrs  Maximum order of neighborhood of vertices for logg Within
the hydrogen-suppressed graph

M, A Zagreb group parameter = sum of square of degree over
all vertices

M, A Zagreb group parameter = sum of cross-product of degrees
over all neighboring (connected) vertices

IC, Mean information content or complexity of a graph based on
the ™ (r = 0-5) order neighborhood of vertices in a
hydrogen-filled graph

SIC, Structural information content for ry, (r = 0-5) order
neighborhood of vertices in a hydrogen-filled graph

CIC, Complementary information content for ry, (r = 0-5) order
neighborhood of vertices in a hydrogen-filled graph

% Path connectivity index of order h = 0-6

be Cluster connectivity index of order h = 5-6

hxpc Path-cluster connectivity index of order h = 4-6

¥ Valence path connectivity index of order h = 0-6

& Valence cluster connectivity index of order h = 5-6

e Valence path-cluster connectivity index of order h = 46

hy® Valence path connectivity index of order h = 0-6

Iy Valence cluster connectivity index of order h = 5-6

hxB-  Valence path-cluster connectivity index of order h = 4-6

P, Number of paths of length h = 0-9

J Balaban’s J index based on distance

JB Balaban’s J index based on multigraph bond orders

X Balaban’s J index based on relative electronegativities

J¥ Balaban’s J index based on relative covalent radii
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